Gyoto::Astrobj::Python::ThinDisk Class Reference

Coding a Gyoto::Astrobj::ThinDisk in Python. More...

#include <GyotoPython.h>

Inheritance diagram for Gyoto::Astrobj::Python::ThinDisk:
Gyoto::Astrobj::ThinDisk Gyoto::Python::Base Gyoto::Astrobj::Generic Gyoto::Functor::Double_constDoubleArray Gyoto::SmartPointee Gyoto::Object

List of all members.

Public Types

typedef Gyoto::SmartPointer
< Gyoto::SmartPointee
Subcontractor_t (Gyoto::FactoryMessenger *, std::vector< std::string > const &)
 A subcontractor builds an object upon order from the Factory.

Public Member Functions

virtual Property const * getProperties () const
 Get list of properties.
 ThinDisk (const ThinDisk &)
 Copy constructor.
 ~ThinDisk ()
 Destructor.
ThinDiskclone () const
 Cloner.
virtual double emission (double nu_em, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const
 Specific intensity I.
virtual void emission (double Inu[], double nu_em[], size_t nbnu, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const
 Specific intensity I for several values of em.
virtual double integrateEmission (double nu1, double nu2, double dsem, double c_ph[8], double c_obj[8]=NULL) const
 12 I d (or j)
virtual void integrateEmission (double *I, double const *boundaries, size_t const *chaninds, size_t nbnu, double dsem, double *cph, double *co) const
 12 I d (or j)
virtual double transmission (double nuem, double dsem, double coord[8]) const
 Transmission: exp( * dsem ).
virtual double operator() (double const coord[4])
virtual void getVelocity (double const pos[4], double vel[4])
 Get fluid 4-velocity at point.
virtual std::string module () const
 Return module_.
virtual void module (const std::string &)
 Set module_ and import the Python module.
virtual std::string inlineModule () const
 Return inline_module_.
virtual void inlineModule (const std::string &)
 Set inline_module_ and import the Python module.
virtual std::string klass () const
 Retrieve class_.
virtual void klass (const std::string &)
 Set class_ and instantiate the Python class.
virtual std::vector< double > parameters () const
 Retrieve parameters_.
virtual void parameters (const std::vector< double > &)
 Set parameters_ and send them to pInstance_.
virtual double innerRadius () const
 Get rin_.
virtual double innerRadius (std::string const &) const
 Get rin_.
virtual void innerRadius (double)
 Set rin_.
virtual void innerRadius (double, std::string const &)
 Set rin_.
virtual double outerRadius () const
 Get rout_.
virtual double outerRadius (std::string const &) const
 Get rout_.
virtual void outerRadius (double)
 Set rout_.
virtual void outerRadius (double, std::string const &)
 Set rout_.
virtual double thickness () const
 Get thickness_.
virtual double thickness (std::string const &) const
 Get thickness_.
virtual void thickness (double)
 Set thickness_.
virtual void thickness (double, std::string const &)
 Set thickness_.
virtual int dir () const
 Get dir_.
virtual void dir (int)
 Set dir_.
virtual bool corotating () const
virtual void corotating (bool t)
 Get dir_==1.
virtual double operator() (double const coord[])
 Set dir_=t?1:-1.
virtual double projectedRadius (double const coord[]) const
 Projected radius of position coord on the equatorial plane.
virtual double sphericalPhi (double const coord[]) const
 Longitude.
virtual int Impact (Gyoto::Photon *ph, size_t index, Astrobj::Properties *data=NULL)
 Does a photon at these coordinates impact the object?
virtual SmartPointer
< Metric::Generic
metric () const
 Get the Metric gg_.
virtual void metric (SmartPointer< Metric::Generic >)
 Set the Metric gg_.
virtual double rMax ()
 Get maximal distance from center of coordinate system.
virtual double rMax () const
 Get maximal distance from center of coordinate system.
virtual double rMax (std::string const &unit)
 Get rmax_ is specified unit.
virtual double rMax (std::string const &unit) const
 Get rmax_ is specified unit.
virtual void rMax (double val)
 Set maximal distance from center of coordinate system.
virtual void rMax (double val, std::string const &unit)
 Set maximal distance from center of coordinate system.
virtual double deltaMax (double coord[8])
 Get max step constraint for adaptive integration.
const std::string kind () const
 Get the kind of the Astrobj (e.g. "Star").
void opticallyThin (bool flag)
 Set whether the object is optically thin.
bool opticallyThin () const
 Query whether object is optically thin.
void radiativeQ (bool flag)
bool radiativeQ () const
virtual void radiativeQ (double Inu[], double Taunu[], double nu_em[], size_t nbnu, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const
void showshadow (bool flag)
bool showshadow () const
void redshift (bool flag)
bool redshift () const
virtual Gyoto::Quantity_t getDefaultQuantities ()
 Which quantities to compute if know was requested.
virtual void setParameters (FactoryMessenger *fmp)
 Main loop in Subcontractor_t function.
virtual void processHitQuantities (Photon *ph, double *coord_ph_hit, double *coord_obj_hit, double dt, Astrobj::Properties *data) const
 Fills Astrobj::Properties.
void incRefCount ()
 Increment the reference counter. Warning: Don't mess with the counter.
int decRefCount ()
 Decrement the reference counter and return current value. Warning: Don't mess with the counter.
int getRefCount ()
 Get the current number of references.
virtual bool isThreadSafe () const
 Whether this class is thread-safe.
void set (Property const &p, Value val)
 Set Value of a Property.
void set (Property const &p, Value val, std::string const &unit)
 Set Value (expressed in unit) of a Property.
void set (std::string const &pname, Value val)
 Set Value of a Property.
void set (std::string const &pname, Value val, std::string const &unit)
 Set Value (expressed in unit) of a Property.
Value get (Property const &p) const
 Get Value of a Property.
Value get (std::string const &pname) const
 Get Value of a Property.
Value get (Property const &p, std::string const &unit) const
 Get Value of a Property, converted to unit.
Value get (std::string const &pname, std::string const &unit) const
 Get Value of a Property, converted to unit.
Property const * property (std::string const pname) const
 Find property by name.
virtual void fillProperty (Gyoto::FactoryMessenger *fmp, Property const &p) const
 Output a single Property to XML.
virtual void fillElement (Gyoto::FactoryMessenger *fmp) const
 Fill the XML element for this Object.
virtual int setParameter (std::string name, std::string content, std::string unit)
 Set parameter by name.
virtual void setParameter (Gyoto::Property const &p, std::string const &name, std::string const &content, std::string const &unit)
 Set parameter by Property (and name).
std::string describeProperty (Gyoto::Property const &p) const
 Format desrciption for a property.
void help () const
 Print (to stdout) some help on this class.

Public Attributes

 GYOTO_OBJECT_THREAD_SAFETY

Static Public Attributes

static GYOTO_OBJECT Property const properties []
 Property list.

Protected Attributes

double rin_
 disk inner radius in geometrical units
double rout_
 disk outer radius in geometrical units
double thickness_
 disk thickness
int dir_
 1 for corotating (default), -1 for counterrotating.
SmartPointer
< Gyoto::Metric::Generic
gg_
 The Metric in this end of the Universe.
double rmax_
 Maximum distance to the center of the coordinate system [geometrical units].
bool flag_radtransf_
 1 if radiative transfer inside Astrobj, else 0
int radiativeq_
 1 to use the new radiativeQ function (under dvp)
int shadow_
 1 to highlight the shadow region in the image
int noredshift_
 1 to impose redshift factor g = 1
std::string kind_
 The "kind" that is output in the XML entity.
std::vector< std::string > plugins_
 The plug-ins that needs to be loaded to access this instance's class.
std::string module_
 Name of the Python module that holds the class.
std::string inline_module_
 Python source code for module that holds the class.
std::string class_
 Name of the Python class that we want to expose.
std::vector< double > parameters_
 Parameters that this class needs.
PyObject * pModule_
 Reference to the python module once it has been loaded.
PyObject * pInstance_
 Reference to the python instance once it has been instantiated.

Private Attributes

PyObject * pEmission_
PyObject * pIntegrateEmission_
PyObject * pTransmission_
PyObject * pCall_
PyObject * pGetVelocity_
PyObject * pGiveDelta_
bool pEmission_overloaded_
bool pIntegrateEmission_overloaded_

Friends

class Gyoto::SmartPointer< Gyoto::Astrobj::Python::ThinDisk >
class Gyoto::SmartPointer< Gyoto::Astrobj::ThinDisk >
class Gyoto::SmartPointer< Gyoto::Astrobj::Generic >

Detailed Description

Coding a Gyoto::Astrobj::ThinDisk in Python.

Sample XML file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Scenery>

  This example shows how to code a spectrum in Python directly in the
  XML file.

  <Metric kind = "KerrBL">
    <Spin> 0. </Spin>
  </Metric>

  <Screen>
    <Position> 1000. 100. 1.22 0. </Position>
    <Time unit="geometrical_time"> 1000. </Time>
    <FieldOfView> 0.314159265358979323846264338327950288419716 </FieldOfView>
    <Resolution> 32 </Resolution>
  </Screen>

  <Astrobj kind = "Python::ThinDisk">

    Python::ThinDisk inherits from ThinDisk, we can set the usual
    parameters:
    <InnerRadius> 3. </InnerRadius>
    <OpticallyThin/>


    We could write a python module in a separate file, say
    "gyoto_sample_spectra.py", and use the "Module" entity to load it:
    <!--Module>gyoto_sample_spectra</Module-->

    Alternatively, we can put the Python code inline using the
    "InlineModule" entity. Common indentation will be removed so we
    don't have to flush everything left .
    <InlineModule>
        class ThinDisk:
            def emission(self, nuem, dsem, cph, co):
                return dsem
    </InlineModule>

    Since there is only one class in the module, we do not need to
    specify the class name here:
    <!--Class>ThinDisk</Class-->

  </Astrobj>

  <MinimumTime> 0. </MinimumTime>
</Scenery>

Sample Python module:

'''Sample Astrobj::ThinDisk for using with Gyoto Python plug-in

   Those classes demonstrate how to use Python classes as Gyoto
   Astrobj::ThibDisk implementations using Gyoto's "python"
   plug-in. Note that this plug-in can be renamed to whatever matches
   the particular version of Python it has been built against
   (e.g. python3.4).

   The goal is to be able to instantiate these from XML, from
   Yorick... and even from Python using the gyoto extension...

   Synopsis:

   import gyoto.core
   gyoto.core.requirePlugin("python") # or python2.7 or python3.4...
   td=gyoto.core.Astrobj("Python::ThinDisk")
   td.set("Module", "gyoto_sample_thindisks")
   td.set("Class", "ThinDisk")

   Classes that aim at implementing the Gyoto::Astrobj::ThinDisk
   interface do so by providing the following methods:

   getVelocity, giveDelta, emission, integrateEmission, transmission,
   __setitem__:
              optional.
   emission and integrateEmission can be overloaded by using the
   varargs argument.

'''

class ThinDisk:
    '''A ThinDisk with trivial emission
    '''
    def emission(self, nuem, dsem, cph, co):
        return dsem

Member Typedef Documentation

typedef Gyoto::SmartPointer<Gyoto::SmartPointee> Gyoto::SmartPointee::Subcontractor_t(Gyoto::FactoryMessenger *, std::vector< std::string > const &) [inherited]

A subcontractor builds an object upon order from the Factory.

Various classes need to provide a subcontractor to be able to instantiate themselves upon order from the Factory. A subcontractor is a function (often a static member function) which accepts a pointer to a FactoryMessenger as unique parameter, communicates with the Factory using this messenger to read an XML description of the object to build, and returns this objet. SmartPointee::Subcontractor_t* is just generic enough a typedef to cast to and from other subcontractor types: Astrobj::Subcontractor_t, Metric::Subcontractor_t, Spectrum::Subcontractor_t. A subcontractor needs to be registered using the relevant Register() function: Astrobj::Register(), Metric::Register(), Spectrum::Register().


Member Function Documentation

ThinDisk* Gyoto::Astrobj::Python::ThinDisk::clone (  )  const [virtual]

Cloner.

This method must be implemented by the various Astrobj::Generic subclasses in order to support cloning:

 SmartPointer<Astrobj> deep_copy = original->clone();

Cloning is necessary for multi-threading, recommended for interaction with the Yorick plug-in etc.

Implementing it is very straightforward, as long as the copy constructor Generic(const Generic& ) has been implemented:

 MyAstrobj* MyAstrobj::clone() const { return new MyAstrobj(*this); }

Reimplemented from Gyoto::Astrobj::ThinDisk.

virtual double Gyoto::Astrobj::Generic::deltaMax ( double  coord[8]  )  [virtual, inherited]

Get max step constraint for adaptive integration.

Parameters:
[in] coord position
Returns:
max step to find this object reliably

Reimplemented in Gyoto::Astrobj::Complex.

std::string Gyoto::Object::describeProperty ( Gyoto::Property const &  p  )  const [inherited]

Format desrciption for a property.

Returns a string containing the name(s) and type of the property, as well as whether it supports unit.

virtual void Gyoto::Astrobj::Python::ThinDisk::emission ( double  Inu[],
double  nu_em[],
size_t  nbnu,
double  dsem,
double  coord_ph[8],
double  coord_obj[8] = NULL 
) const [virtual]

Specific intensity I for several values of em.

Called by the default implementation for processHitQuantities().

emission() computes the intensity I emitted by the small volume of length dsem. It should take self-absorption along dsem into account.

Same as emission(double nu_em, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const looping on several values of nu_em.

Parameters:
Inu[nbnu] Output (must be set to a previously allocated array of doubles)
nu_em[nbnu] Frequencies at emission
nbnu Size of Inu[] and nu_em[]
dsem Length over which to integrate inside the object
coord_ph Photon coordinate
coord_obj Emitter coordinate at current photon position
Returns:
I or dI [W m-2 sr-2]

Reimplemented from Gyoto::Astrobj::Generic.

virtual double Gyoto::Astrobj::Python::ThinDisk::emission ( double  nu_em,
double  dsem,
double  coord_ph[8],
double  coord_obj[8] = NULL 
) const [virtual]

Specific intensity I.

Called by the default implementation for processHitQuantities().

emission() computes the intensity I emitted by the small volume of length dsem, in the emitter's frame. It should take self-absorption along dsem into account.

Reminder :

  • intensity = I [J m^-2 s^-1 ster^-1 Hz^-1];
  • invariant intensity = I/3, which has the same value in any frame;
  • emission coefficient = j [J m^-3 s^-1 ster^-1 Hz^-1] , defined by dI = j*ds, where ds is the distance travelled by the photon inside the object;
  • invariant emission coef = j/2, which has the same value in any frame.

The equation used for radiative transfer (without absorption) is:

d(I/3)/d = (j/2) [*]

where is the integration parameter along the null geodesic.

NB: Let us consider a particular observer, with being the frequency measured by this observer, and ds being the proper distance (as measured by the observer) that the photon travels as it moves from to +d along its geodesic. Then it can be shown that:

d = ds/

This shows that Eq. [*] is homogeneous.

The default implementation returns 1. if optically thick and dsem if optically thin. It allows for a quick implementation of your object for visualization purposes.

Parameters:
nu_em Frequency at emission [Hz]
dsem length over which to integrate inside the object [geometrical units]
coord_ph Photon coordinate
coord_obj Emitter coordinate at current photon position

Reimplemented from Gyoto::Astrobj::Generic.

virtual void Gyoto::Object::fillElement ( Gyoto::FactoryMessenger fmp  )  const [virtual, inherited]

Fill the XML element for this Object.

The base implementation simply calls fillProperty() for each Property defined for the Object.

Derived classes should avoid overriding fillElement(). It may make sense occasionally, e.g. to make sure that the metric is output first.

To customize how a given Property is rendered, it is better to override fillProperty().

If this method is overridden, the implementation should in general call fillElement() on the direct base.

Reimplemented in Gyoto::Astrobj::Complex, Gyoto::Spectrometer::Complex, and Gyoto::Scenery.

virtual void Gyoto::Object::fillProperty ( Gyoto::FactoryMessenger fmp,
Property const &  p 
) const [virtual, inherited]

Output a single Property to XML.

The base implementation decides what to do based on the p.type. The format matches how setParameters() an setParameter() would interpret the XML descition.

Overriding this method should be avoided, but makes sense in some cases (for instance Screen::fillProperty() selects a different unit for Distance based on its magnitude, so that stellar sizes are expressed in solar radii while smaller sizes can be expressed in meters and larger sizes in parsecs).

Overriding implementation should fall-back on calling the implementation in the direct parent class:

 class A: public Object {};
 class B: public A { 
  using B::setParameter;
  virtual void fillProperty(Gyoto::FactoryMessenger *fmp,
                        Property const &p) const ;
 };
 void B::fillProperty(Gyoto::FactoryMessenger *fmp,
                        Property const &p) const {
   if (name=="Duff") fmp->doSomething();
   else A::fillProperty(fmp, p);
 }

Reimplemented in Gyoto::Astrobj::DirectionalDisk, Gyoto::Astrobj::Disk3D, Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Astrobj::NeutronStarModelAtmosphere, Gyoto::Astrobj::PatternDisk, Gyoto::Astrobj::PolishDoughnut, Gyoto::Scenery, Gyoto::Screen, Gyoto::Astrobj::Star, and Gyoto::Spectrometer::Uniform.

virtual Gyoto::Quantity_t Gyoto::Astrobj::Generic::getDefaultQuantities (  )  [virtual, inherited]

Which quantities to compute if know was requested.

Return a Gyoto::Quantity_t suitable as input to Gyoto::Scenery::setRequestedQuantities() to set de default quantities to compute for this object. The default of these defaults GYOTO_QUANTITY_INTENSITY.

Reimplemented in Gyoto::Astrobj::PageThorneDisk.

virtual Property const* Gyoto::Astrobj::Python::ThinDisk::getProperties (  )  const [virtual]

Get list of properties.

This method is declared automatically by the GYOTO_OBJECT macro and defined automatically by the GYOTO_PROPERTY_END macro.

Reimplemented from Gyoto::Astrobj::ThinDisk.

virtual void Gyoto::Astrobj::Python::ThinDisk::getVelocity ( double const   pos[4],
double  vel[4] 
) [virtual]

Get fluid 4-velocity at point.

Fill vel with the 4-vector velocity of the fluid at 4-position pos. getVelocity() should work at some distance from the equatorial plane. The default implementation calls Metric::Generic::circularVelocity().

Parameters:
[in] pos 4-position at which to compute velocity;
[out] vel 4-velocity at pos.

Reimplemented from Gyoto::Astrobj::ThinDisk.

void Gyoto::Object::help (  )  const [inherited]

Print (to stdout) some help on this class.

Describe all properties that this instance supports.

virtual int Gyoto::Astrobj::ThinDisk::Impact ( Gyoto::Photon ph,
size_t  index,
Astrobj::Properties data = NULL 
) [virtual, inherited]

Does a photon at these coordinates impact the object?

Impact() checks whether a Photon impacts the object between two integration steps of the photon's trajectory (those two steps are photon->getCoord(index, coord1) and photon->getCoord(index+1, coord2)). Impact returns 1 if the photon impacts the object between these two steps, else 0. In many cases of geometrically thick obects, the implementation Astrobj::Standard::Impact() will be fine.

Impact will call Generic::processHitQuantities() (which is virtual and may be re-implemented) to compute observable properties on demand: if the data pointer is non-NULL, the object will look in it for pointers to properties which apply to its kind. If a pointer to a property known to this object is present, then the property is computed and store at the pointed-to address. For instance, all objects know the "intensity" property. If data->intensity != NULL, the instensity is computed and stored in *data->intensity.

If data is non-NULL and only in this case, processHitQuantities() will also call ph->transmit() to update the transmissions of the Photon (see Photon::transmit(size_t, double)). This must not be done if data is NULL (see Astrobj::Complex::Impact() for an explanation).

Impact() may not extend the ph Worldline. The only two dates that are guaranteed to be defined are at indices index and index+1.

Parameters:
ph Gyoto::Photon aimed at the object;
index Index of the last photon step;
data Pointer to a structure to hold the observables at impact.
Returns:
1 if impact, 0 if not.

Implements Gyoto::Astrobj::Generic.

virtual void Gyoto::Astrobj::Python::ThinDisk::inlineModule ( const std::string &   )  [virtual]

Set inline_module_ and import the Python module.

Side effects:

Reimplemented from Gyoto::Python::Base.

virtual void Gyoto::Astrobj::Python::ThinDisk::integrateEmission ( double *  I,
double const *  boundaries,
size_t const *  chaninds,
size_t  nbnu,
double  dsem,
double *  cph,
double *  co 
) const [virtual]

12 I d (or j)

Like double integrateEmission(double nu1, double nu2, double dsem, double c_ph[8], double c_obj[8]) const for each Spectrometer channel.

Reimplemented from Gyoto::Astrobj::Generic.

virtual double Gyoto::Astrobj::Python::ThinDisk::integrateEmission ( double  nu1,
double  nu2,
double  dsem,
double  c_ph[8],
double  c_obj[8] = NULL 
) const [virtual]

12 I d (or j)

Compute the integral of emission() from 1 to 2. The default implementation is a numerical integrator which works well enough and is reasonably fast if emission() is a smooth function (i.e. no emission or absorption lines). If possible, it is wise to implement an analytical solution. It is used by processHitQuantities to compute the "BinSpectrum" quantity which is the most physical: it is the only quantity that can be actually measured directly by a real-life instrument.

Reimplemented from Gyoto::Astrobj::Generic.

virtual bool Gyoto::Object::isThreadSafe (  )  const [virtual, inherited]

Whether this class is thread-safe.

Return True if this object is thread-safe, i.e. if an instance and its clone can be used in parallel threads (in the context of Scenery::raytrace()). Known objects which are not thread-safe include Lorene metrics and everything from the Python plug-in.

The default implementation considers that the class itself is thread safe and recurses into the declared properties to check whether they are safe too. Classes that abide to the Object/Property paradigm and are themselves thread-safe have nothing special to do.

Objects that clone children in their copy constructor that are not declared as properties must take these children into account.

Classes that are never thread-safe must declare it. It acn be easily done using GYOTO_OBJECT_THREAD_SAFETY in the class declaration and GYOTO_PROPERTY_THREAD_UNSAFE in the class definition.

virtual void Gyoto::Astrobj::Python::ThinDisk::klass ( const std::string &  c  )  [virtual]

Set class_ and instantiate the Python class.

Sets pInstance_.

This generic implementation takes care of the common ground, but does not set 'this' or call parameters(parameters_). Therefore, all the derived classes should reimplement this method and at least call Python::Base::klass(c) and parameters(parameters_). Between the two is the right moment to check that the Python class implements the required API and to cache PyObject* pointers to class methods.

Reimplemented from Gyoto::Python::Base.

virtual void Gyoto::Astrobj::Python::ThinDisk::module ( const std::string &   )  [virtual]

Set module_ and import the Python module.

Side effects:

Reimplemented from Gyoto::Python::Base.

virtual double Gyoto::Astrobj::ThinDisk::operator() ( double const   coord[]  )  [virtual, inherited]

Set dir_=t?1:-1.

A function which changes sign on the equatorial plane. theta-pi/2 or z

Implements Gyoto::Functor::Double_constDoubleArray.

bool Gyoto::Astrobj::Generic::opticallyThin (  )  const [inherited]

Query whether object is optically thin.

See opticallyThin(bool flag).

void Gyoto::Astrobj::Generic::opticallyThin ( bool  flag  )  [inherited]

Set whether the object is optically thin.

Set flag indicating that radiative transfer should be integrated, i.e. the object is to be considered optically thin.

Parameters:
flag,: 1 if optically thin, 0 if optically thick.
virtual void Gyoto::Astrobj::Python::ThinDisk::parameters ( const std::vector< double > &   )  [virtual]

Set parameters_ and send them to pInstance_.

The parameters are sent to the class instance using the __setitem__ method with numerical keys.

Reimplemented from Gyoto::Python::Base.

virtual void Gyoto::Astrobj::Generic::processHitQuantities ( Photon ph,
double *  coord_ph_hit,
double *  coord_obj_hit,
double  dt,
Astrobj::Properties data 
) const [virtual, inherited]

Fills Astrobj::Properties.

processHitQuantities fills the requested data in Impact. To use it, you need to call it in the Impact() method for your object in case of hit. It will fill Redshift, Intensity, Spectrum, BinSpectrum and update the Photon's transmission by calling Photon::transmit(), only if data==NULL.

You can overload it for your Astrobj. The generic implementation calls emission(), integrateEmission() and transmission() below.

Reimplemented in Gyoto::Astrobj::DynamicalDiskBolometric, Gyoto::Astrobj::PageThorneDisk, and Gyoto::Astrobj::UniformSphere.

Property const* Gyoto::Object::property ( std::string const   pname  )  const [inherited]

Find property by name.

Look into the Property list for a Property whose name (or name_false, for a boolean Property) is pname. Return a const pointer to the first such property found, or NULL if none is found.

virtual void Gyoto::Astrobj::Generic::rMax ( double  val,
std::string const &  unit 
) [virtual, inherited]

Set maximal distance from center of coordinate system.

Call Generic::rMax(double val) after converting val from unit to geometrical units.

Parameters:
val rmax_ expressed in unit "unit";
unit string...
virtual void Gyoto::Astrobj::Generic::rMax ( double  val  )  [virtual, inherited]

Set maximal distance from center of coordinate system.

Set maximal distance from center of coordinate system at which a Photon may hit the object.

Parameters:
val new rmax_ in geometrical units.
virtual double Gyoto::Astrobj::Generic::rMax ( std::string const &  unit  )  [virtual, inherited]

Get rmax_ is specified unit.

Call rMax() and convert result to unit.

Parameters:
unit string
Returns:
double rmax converted to unit
virtual double Gyoto::Astrobj::Generic::rMax (  )  [virtual, inherited]

Get maximal distance from center of coordinate system.

Get maximal distance from center of coordinate system at which a Photon may hit the object.

Child classes may use the rmax_ member to cache this value, if its current value is DBL_MAX.

It can also be set using rMax().

Returns:
rmax_ in geometrical units

Reimplemented in Gyoto::Astrobj::FixedStar, Gyoto::Astrobj::Star, and Gyoto::Astrobj::Torus.

virtual void Gyoto::Object::setParameter ( Gyoto::Property const &  p,
std::string const &  name,
std::string const &  content,
std::string const &  unit 
) [virtual, inherited]

Set parameter by Property (and name).

This function is used when parsing an XML description, if Property (p) of this name is found (i.e. either p.name or p.name_false is equal to name). Implementation should fall-back on calling the direct's parent implementation:

 class A: public Object {};
 class B: public A { 
  using B::setParameter;
  virtual void setParameter(Gyoto::Property const &p,
                            std::string name,
                                std::string content,
                                std::string unit);
 };
 void B::setParameter(Gyoto::Property const &p,
                          std::string name,
                          std::string content,
                          std::string unit) {
   if (name=="Duff") doSomething(content, unit);
   else A::setParameter(p, name, content, unit);
 }
Parameters:
p Property that matches name (p.name == name or p.name_false == name)
name XML name of the parameter (XML entity)
content string representation of the value
unit string representation of the unit

Reimplemented in Gyoto::Astrobj::PolishDoughnut.

virtual int Gyoto::Object::setParameter ( std::string  name,
std::string  content,
std::string  unit 
) [virtual, inherited]

Set parameter by name.

This function is used when parsing an XML description, if no Property of this name is found. Overriding implementation should fall-back on calling the direct's parent implementation:

 class A: public Object {};
 class B: public A { 
  using B::setParameter;
  virtual int setParameter(std::string name,
                            std::string content,
                            std::string unit);
 };
 int B::setParameter(std::string name,
                            std::string content,
                            std::string unit) {
   if (name=="Duff") doSomething(content, unit);
   else return A::setParameter(name, content, unit);
   return 0;  // name was known
 }
Parameters:
name XML name of the parameter (XML entity). This may have a path component, e.g. "Astrobj::Radius", in which case a property named "Astrobj" will be sought in the current object, and setParameter will be called recusrively on this Astrobj with Radius as name.
content string representation of the value
unit string representation of the unit
Returns:
0 if this parameter is known, 1 if it is not.

Reimplemented in Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Metric::KerrKS, Gyoto::Metric::RotStar3_1, and Gyoto::Astrobj::Star.

virtual void Gyoto::Astrobj::Generic::setParameters ( FactoryMessenger fmp  )  [virtual, inherited]

Main loop in Subcontractor_t function.

The Subcontractor_t function for each Astrobj kind should look somewhat like this (templated as Gyoto::Astrobj::Subcontractor<MyKind>):

 SmartPointer<Astrobj::Generic>
 Gyoto::Astrobj::MyKind::Subcontractor(FactoryMessenger* fmp) {
   SmartPointer<MyKind> ao = new MyKind();
   ao -> setParameters(fmp);
   return ao;
 }

Each object kind should implement setParameter(string name, string content, string unit) to interpret the individual XML elements. setParameters() can be overloaded in case the specific Astrobj class needs low level access to the FactoryMessenger. See UniformSphere::setParameters().

Reimplemented from Gyoto::Object.

Reimplemented in Gyoto::Astrobj::Complex, Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Astrobj::OscilTorus, and Gyoto::Astrobj::Star.

virtual double Gyoto::Astrobj::Python::ThinDisk::transmission ( double  nuem,
double  dsem,
double  coord[8] 
) const [virtual]

Transmission: exp( * dsem ).

transmission() computes the transmission of this fluid element or 0 if optically thick. The default implementation returns 1. (no attenuation) if optically thin, 0. if optically thick.

Parameters:
nuem frequency in the fluid's frame
coord Photon coordinate
dsem geometrical length in geometrical units

Reimplemented from Gyoto::Astrobj::Generic.


Member Data Documentation

std::string Gyoto::Python::Base::class_ [protected, inherited]

Name of the Python class that we want to expose.

Property name: Class.

std::string Gyoto::Object::kind_ [protected, inherited]

The "kind" that is output in the XML entity.

E.g. for an Astrobj, fillElement() will ensure

   <Astrobj kind="kind_" ...>...</Astrobj>

is written.

std::string Gyoto::Python::Base::module_ [protected, inherited]

Name of the Python module that holds the class.

For instance, if the class is implemented in toto.py, the module name is "toto". Property name: Module.

std::vector<double> Gyoto::Python::Base::parameters_ [protected, inherited]

Parameters that this class needs.

A list of parameters (doubles) can be passed in the Property Parameters. They will be sent to the Python instance using __setitem__.

std::vector<std::string> Gyoto::Object::plugins_ [protected, inherited]

The plug-ins that needs to be loaded to access this instance's class.

E.g. for an Astrobj, fillElement() will ensure

   <Astrobj ... plugin="plugins_">...</Astrobj>

is written.

Property list.

This static member is declared automatically by the GYOTO_OBJECT macro and defined automatically by the GYOTO_PROPERTY_START, GYOTO_PROPERTY_END and GYOTO_PROPERTY_* macros.

The list of properties is implemented as a static array of Property instances. The last item in a Property of type Property::empty_t, which evaluates to false, so the list can be considered to be NULL-terminated (it is actually rather false-terminated). This empty_t last item can be a link to another Property list: for instance, the last item in Gyoto::Astrobj::Standard::properties is a link to Gyoto::Astrobj::Generic::properties.

Reimplemented from Gyoto::Astrobj::ThinDisk.

double Gyoto::Astrobj::Generic::rmax_ [protected, inherited]

Maximum distance to the center of the coordinate system [geometrical units].

Maximum distance from the center of the coordinate system at which a photon may hit the object. Child classes may compute a decent value for rmax_ at any time if rmax_ is DBL_MAX. External classes (Photons in particular) must use rMax() to access this information.

rmax_ is in geometrical units.

double Gyoto::Astrobj::ThinDisk::thickness_ [protected, inherited]

disk thickness

Geometrical thickness in geometrical units. Used only in the optically thin regime (flag_radtransf_==1). Should be << rin_. Default: 1e-3.


The documentation for this class was generated from the following file:

Generated on 6 May 2017 for Gyoto by  doxygen 1.6.1